Normalization
Preview

(Review if you have seen it before)

Normalization

Normalization: A technique for producing a set of relations
with desirable properties, given the data requirements of an
enterprise
A bottom-up approach to database design
First developed by E.F. Codd around 1972, with 3 normal
forms
Additional normal forms subsequently developed by Boyce-
Codd and Fagin

The Normalization Process

F05.01; The Normalization Process

—
Felation

*

st Hormal Form
Relaten




Data Anomalies

Insertion Anomaly: Insert operation blocked by an artificial
dependency (e.g. cannot insert a new project without an employee
to assign to it)

Deletion Anomaly: Delete operation destroys unintended information
(e.g. delete of last employee on project destroys project information)

Moadification (Update) Anomaly: Changing a single data value
requires changes to multiple tuples (e.g. changing a project due date
requires a change to the record of every person assigned to the
project)

A primary purpose of normalization is to remove these anomalies

Functional Dependency

Functional Dependency: “B” is functionally dependent on “A” if
for every value of “A”, there is exactly one value of “B”

Mathematically, we say that “A” determines “B”
Physically, we might say that “A” is a unique identifier for “B”

Full Functional Dependency: “B” is functionally dependent on
“A” but not on any subset of “A”

Transitive Dependency: If “B” and “C” are both dependent on
“A”, but “C” is also dependent on “B”, we say that “C” is
transitively dependent on “B”

Functional Dependency

Full Functional Dependency: “B” is functionally dependent on
“A” but not on any subset of “A”

Transitive Dependency: If “B” and “C” are both dependent on
“A”, but “C" is also dependent on “B”, we say that “C” is
transitively dependent on “B”




Normalization Process
Formal technique for analyzing relations based on their primary
key and functional dependencies

Often executed as a number of steps, each step corresponding
to a specific normal form

Normalization: Choosing a Unique
Identifier

Normalization requires that we choose a unique identifier for
each relation

Unique Identifier: a collection of one or more attributes that
uniquely identifies each occurrence (each tuple) of a relation
Natural identifiers have real-world meaning

Surrogate (artificial) identifiers are meaningless replacements
for real-world identifers

Criteria for Choosing a Unique Identifier

If there is only one candidate, choose it

Choose the candidate least like to have its value changed
Choose the simplest candidate

Choose the shortest candidate

Invent a unique identifer




First Normal Form (1NF)

Unnormalized Relation: a relation that contains repeating
groups (or that has not been tested for 1NF)

First Normal Form: A relation where the intersection of each
row and column contains only one value (i.e. a relation with no
repeating groups of attributes and no multi-valued attributes)

Transformation to INF

Assign a unique identifier to each relation

Move repeating group to a new relation, copying the original
unique identifier and adding to it so that it is unique.

For a multi-valued attribute (a repeating group of only one
attribute), the attribute itself may be added to the original
primary key to achieve uniqueness.

Example: Unnormalized Relation

INVOICE NUMBER, customer number, customer name, street
address, city, state, zip, telephone, terms, ship via, order
date, (product number, description, quantity, unit price,
extended amount), total order amount




Example: 1NF

INVOICE NUMBER, customer number, customer name, street
address, city, state, zip, telephone, terms, ship via, order date,
total order amount

INVOICE NUMBER, PRODUCT NUMBER, description, quantity,
unit price, extended amount

Second Normal Form (2NF)

Second Normal Form: A relation in INF where every non-key
attribute is fully functionally dependent on the entire key
A 1NF relation with a single attribute primary key is
automatically in 2NF

Example: 2NF

INVOICE NUMBER, customer number, customer name, street
address, city, state, zip, telephone, terms, ship via, order date,
total order amount

INVOICE NUMBER, PRODUCT NUMBER, quantity, sale price,
extended amount

PRODUCT NUMBER, description, unit price




Third Normal Form (3NF)

Third Normal Form: a relation that is in INF and 2NF and in
which no non-primary-key attributes are transitively dependent

Calculated attributes are transitively dependent since they
are determined by other attributes

Transformation to 3NF

Calculated attributes may simply be removed (document the
algorithm or formula)

Non-calculated attributes that are transitively dependent are
placed in a relation (new or existing) where the primary key is
their principal determinant

Example: 3NF

INVOICE NUMBER, customer number, terms, ship via, order date
INVOICE NUMBER, PRODUCT NUMBER, quantity, sale price
PRODUCT NUMBER, description, unit price

CUSTOMER NUMBER, name, address, city, state, zip, telephone




Normalization Summary

In a Third Normal Form relation,

Every non-key attribute depends on the key, the whole key and
nothing but the key,

So help me Codd

Class Exercises

OHNO!
YOU'VE DONE IT
JUST LIKE I TOLD

youn




